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In this paper the author investigates the equations of the perturbed 

motion of a gyrocompass with two rotors, which does not have the pro- 

perties of the space (free) gyrocompass of Geckeler-Anschutz. 

Without dwelling on the properties of a space gyrocompass in detail, 

we shall mention only that the natural, undamped vibrations of its sens- 

ing element have equal periods with respect to all three Principal axes 

of inertia and that this period aPProxlmatelY equals the Schuler period 

that is TO = 1 nd R/g (R is the earth’s radius, g is the gravitational 

acceleration). 

The above mentioned property is imparted through a spring, which couples 

the two gyroscopes and creates a moment about the vertical axis of each 

inner ring, given by the formula 

N = h sin 2r (0.1) 

where x is a certain proportionality factor, 2r is the angle between the 

axes of rotation of the two rotors. The theory of the space gyrocompass 

in simplified term is given in the books of Geckeler [I 1, Grammel [2 1 
and Bulgakov [ 3 1. 

The equations derived in the work of Ishlinskii [4 I could be applied 

to a gyrocompass which does not possess the properties of a spatial gyro- 

compass, like, for example, the two-rotor compass of Anschutz, and also 

certain domestic two-rotor gyrocompasses. 

This paper contains an investigation of the unperturbed motion of the 

above described gyrocompass on the assumption that it is mounted on a 

ship travelling at high latitudes (70-80’). 

In the gyrocompass investigated in this paper the condition (0.1) is 

not satisfied. 

When a gyroscope turns about the axis of its inner ring by a small 
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perturbation angle 6 from the position of its unperturbed equilibrium 

characterized by the angle E = c ,,, then the spring which is coupling the 

two gyroscopes creates the restoring moment 

M = s8 (0.2) 

where s is the slope of the characteristic of the restoring moment de- 

pending on the rigidity of the spring coupling. 

1. We shall assume that for the unperturbed motion of a gyrocompass 
the following condition is satisfied 

(1.1) 

where B is the angular momentum of a rotor, PZ is the pendular moment of 
the gyrocompass, V is the velocity of the suspension point of the gyro- 
sphere, u is the angular velocity of the earth, q5 is the latitude, vN, vE 
are, respectively, the Northern and Eastern components of the ship’s 
velocity. 

The differential equations of the perturbed motion of the gyrocompass 
under consideration, which is mounted on amanoeuveringship, are given in 
the paper [ 4 I . Assuming that the conditions (0.2) and (1.1) are satis- 
fied we have 

~~(Va)-PlP-2BBine,ns=O, ~+‘s -@=O 

$(2B sin Ed 6) - Pl 7 + y LlV m = 0, 
(1.2) 

7’ -I s 2B sin q, 
s+q3=0 

Here a is the aximuth deviation angle of the gyrosphere, /3 is the 
elevation angle of the Northern end of the gyrosphere above the plane 
tangent to the earth’s surface, y is the angle of rotation of the gyro- 
sphere about the North-South line. 

The equations (1.2)) as well as the equations given in the paper [ 4 I , 
refer to the right-handed coordinate trihedral z”yozo of Darboux, the x0- 
axis coinciding with the velocity vector V of the suspension point along 
the tangent line to the earth’s surface; the earth is assumed to be a 
sphere of radius R and the z” -axis is along the normal to the earth’s sur- 
face. 

‘Ihe angular velocity R of the trihedral about the z”-axis is expressed 
by the formula 

Q=usin(p-j- ‘13 t R g9-ka” ) (1.3) 

where a* is the velocity deviation of the gyrocompass. 

2. We shall assume that the ship manoeuvres at a given fixed latitude c$. 
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We shall introduce new variables x1 and x4 through the relations 

We shall also 
respectively. We 

replace the symbols /.!I and y by the ~~~1s x2 and x3, 
shall assume besides that the parameters of the gyro- 

compass are such that the condition 

249 = PlRu (2.2) 
is satisfied. 

Then the system (1.2) could be *educed to 

* 
Xl -Lx 

ucoscp a --42(t) tgqq = 0, 2; + ~US~~~X~ -+- sz@)x, = 0 
(2931 

a;,‘$ ucosyrr,-SZ(t)x, = 0, xq=- V2 
-x3 + B(t)ctgq;lx~ = 0 usinqa 

Y= I/ H, Jf/pls 
R P w = 2B sin Ed (b) (24 

From the system (1,2) we could obtain the equations of motion of the 
gyrocompass, discussed in [ 1,2,3 1 t 

In order to obtain these equations, we must neglect the terms contain- 
ing the factor C!, and we must regard the quantity p as a constant. Ender 
these conditions the system could be broken up into two independent 
systems of equations with respect to x1> x2 and xi, ny which determine 
the undamped harmonic vibrations of the compass with the circular fre- 
quencies v and pI ~esFe~t~ve~y~ 

At high latitudes, the terms containing the quantity 6 become of the 
same order of magnitude as the remaining terms in the system (2.3) and 
could considerably influence the properties of the solutions. Ihis can be 
easily shown in the simple case corresponding to C! and p constant. 

with these conditions the characteristic equation of the system (2.3) 
could he written in the form 

h~+lWq-C=O, (6=p~-+-v~f2Q~, cz==p?-y”)(R”-vy) (2.5) 

The necessary and sufficient conditions for the roots of (25) to be 
pure imaginaries are 

0 > 0, c> 3, 62 - 4c > 0 (2.6) 

The first and the third of the above conditions are always satisfied, 
the second one implies the following inequalities: 

either f2’ -f?‘>O, !.G5’---\r2>O~ or !Y---p2<0, ti2-Vv”<0 (2.7) 
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For ex le, ifv2<G<p2, than the elation 1(2.5) will show that 

c < 0, and the solutions of (2.3) in such a case will grow without bounds. 

3. We shall now investigate the case where at a given latitude the 

ship travels in a circle with constant speed V, beginning to circulate 

for the first time from the Eastern course. Then 

ZIN =vsinot, WE'===@COSWf (+) 

where o is the circular frequency and 7' is the period. 

From the formulas (1.11, (1.3) and (2.2) we have 

GW 

Using the expressions (3.1) we obtain 

sin”s,= 1-2~ vcoscp , 
cosot- (, 

v lb 

KusirPrp Ru sinqc >i 
sin2 9 

Q= 
vocosot "tgpl 

Ru cas cp + v cos ot 
Jr usincp-/- R cos ot + 

vaosinPwt 
(R 

u cos ‘p + v co9 otp 
(3.5) 

&der these conditions the vari le coefficients of the system G.3) 
would be periodic forties of period T, We shall investigate by the 
Liapunov method the stability of the trivial solution of the system (2.3). 

Let 11 x. 
system (2, S! 

(t > 11 be the fundamental matrix of the solutions of the 
corresponding to the initial conditions 

where j is the index of the function xj and k is the index of a solution 
171. 

In our case the characteristic equation of (2.31 will be reciprocal. 

To prove this we apply the same reaaon~g which ~~~p~ov used in his in- 

vestigation of the system of differential equations in the problem of 

three bodies I5 I. 

We shall present the: system (2.3) in the form of two equations in zi 
and XY' We have 

q" + (A--LF) LlTl~~~~~~~~~+~~~~~ 

q"-+- (+-~2) x4 = - 2Qctgp+‘-SZI ctgqq 
(3.7) 

Ck the strength of formulas (2.41, (3.41, and (3.5) the functions p2 
and R will be even and the equations (3.7) will not change if we replace 
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t by - t and x4 by - x4. Thus, if p*is any root of the characteristic 

equation, then alongside the particular solutions 

where iw and N are periodic f~~t~~~s 

exist particular solutions 

The above solutions correspond to 

xq - - lJ7 (_ t) p-L:r 

the root l/p of the same character- 

istic equation; consequently, the equation will be reciprocal of the form 

P” -t JW + A,p2 -+ A$ + 1 = 0 

$4 = N (t) pi/* 

of t of period I$, there will also 

The regions of stability anon-asyrn~tot~~~ are determined by inequal- 

ities, also derived by Liapunov (see also [t; 3 1, which are as follows 

-2<&<6, 4 (A, - 2) < A,” < ;(A, =+ 2)2 (3.8) 

The invariants A, and A, could be computed by the formulas 

213 

233 ' 

$24 

(3.10) 

x44 1 

4. In order to find the invariants A, and A,, we shall replace the 

system (2.3) by an equivalent system of Volterra integral equations of 

the second kind, and then use successive approximations. 

The construction of a scheme of successive approximations is more con- 

venient when the ship begins to circulate from the Northern course. Then, 

instead of (3.1) we have uN = v CDS o t, pE = - v sin o t, and the equa- 

tions 13.2) and 13,3) assume the form 

an- PO “* “’ 
1 - p. ain ot 

where (4.2) 

In this case the functions p*(t) and Q(t> are not even; neverthe- 

less, as we shall see later, the characteristic equation (2.3) is also 
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reciprocal in this case. 

We shall make calculations for speeds of the ship less than 25-30 

knots (12-15 ,' m set), with the period of circulation T= 4 min and for 

C$= 80". 

Lhder such conditions the dimensionless parameter p determined from 

the formula (4.2) will be small compared with unity (of the order 0.151 

0.2). Using this assumption in the expansion 

1 
I +psinot 

=l +fksinwt+... 

and taking into ~~~o~t that u sin 4 is a small quantity of order p’,we 
obtain 

SL=-~c0sinwt-+O(~*) (44 

where O(p2) denotes all terms of the same order a p2 or higher. Similarly, 

considering cot2$ a small quantity at latitudes '70-80o,we have 

sin* Ed = sin2 y, _t 0 ([.L”) (44 
Using only the first terms in the expressions (4.3) and (4.41, we ob- 

tain the system 12.3) in the form 

f4.5) 
$2 

2,’ - - U COS Q 
2, + pw tgysinotq =t= 0, ,x2’ + 22 cos yxl. + pw sin f&x, = 0 

. V2 

%I --x -puctgy,sinwtx, = 0: 
usinp 3 z,'+ $ usincpcpz, --tisinwt2, = 0 

Here, on the strength of (4.41, we have taken p = 4 ~~~~2~ sin #, 

We shall break up the interval (0, 7') into two intervals (0, n/o>, and 

(n/o, 217 /o). We have 

In the interval 06 t Q ~~~,us~~ the expansion (4,6), we shall ex- 

press the system (4.5) in the form 

xJ -+ f it sin cpx4 - S&x, = - f (t) 22 (4.7) 
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(4.8) 

Considering the right-hand members of the system (4.7) as the known 
functions of time and applying the method of variation of constants, we 
shall reduce the system to the equivalent system of Volterra integral 
equations of the second kind 

where the functions x.‘(t) in the indicated interval are solutions of the 
system (4.7) when the’right-hand members equal zero (homogeneous solu- 
tions). 

‘Ihe characteristic equation of this system is of the form (2.5) 

ii4 + (p” + v2 + 252,2) I.2 + (Qo2 - p’) (R,2 - v’) = 0 (4.10) 

Using the same reasoning as in Section 2, we conclude that if the 
quantity R, 2 is in the interval 

v2 < s102 < p2 (4.11) 

then the equation (4.10) would have a positive root. 

lhe condition R, > n could be reduced to 

v> ;%RUCOS’P 
cl 

(4.12) 

Assuming that the condition (4.11) is satisfied, we obtain the roots 
of the equation (4.10) 

i\, L m, Aa = - m, h, = qi. ‘h, = - qi (4.13) 

We shall apply to the equations (4.9) an iteration scheme, taking as 
the first approximation xi(t) = xi’(t). ‘Ihe iteration scheme is fully 
legitimate, because the sequence of the successive approximations for 
the equations (4.9) is convergent. 

Using only the first approximation we 
(0, n/o) in the form 

obtain solutions in the interval 

Here 

xi = Cj ch mt + Dish mt + Ei COS qt $ Gjsin qt (4.14) 



GS = - 
1 

- -[R,(~02-p”.- 
4 w2 + 9”) 

1 
C4z - 

m2 + q2 2% 

Having formulas (4, X3), it is easy ta construct the matrix ljzjk(t 1 If , 
satisfying the initial conditions (3.6). 

Taking into account the conditions (3.5) and using fu~~aa (4.14) 

and (4,15>, we cm construct the solutions 2 Jo in the interval (0, n/d, 
which after proper adjustment to the new initial conditions can be con- 
tinued in the interval (n/o, 2n/o). 

Equation (4.10) does not change when R, is replaced by - 0 O; therefore, 
in the interval k/o, 2n/‘d we shall also have solutions of the form 
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(4.141, in which the coefficients C, D, E, G should be computed by the 
formulas (4.151 changing-the sign of R,. 

Let += 80°. z, = 30 knots, T = 4 min. The parameters of the compass 

are as follows: 

Pl = 4550 gem; s = 200 gem; 2B = 21 x lo4 gem sec. 

For the above data we have 

P2 = 2.0330 x low5 see-‘; !? i = 1.02438 x 1C5 secd2. 

Since Y* =g/R = 0.15376 x 10-5 set-2, the condition f4.11) is satisfied, 

and the roots of the equation wiP1 have the form (4.13). 

In this case the computed values of I and q are 

m = 1.405799 X 10-j set”; q = 6.655935 x 10-j set -? 

For the above data the matrix ~~~~~~~~~ , satisfying the initial condi- 

tions (3.61, has the form 

{~.~~~~~~ ~g.~~~~66 .-1.123568 - 0.491128 
O.O(145RlKi 0.032136 -- 0.090906:! - 0.03168’, 

- O.OO’lr,SfX - ~r.0865987 
(4.16) \ 7 0.4926i6 - 0.177823 

-- r1.(1160291 - -0.148ll5 4.249876 0.492616 

The characteristic equation of the above matrix written with the 

accuracy of three decimal figures is 

p” ~~ %%9p3 + 3.805p~ - 2.849~ + 1 .M:Q = 0. (4.17) 

Equations (4.5) have also been integrated on the high speed computer 

‘STRELA” under the same conditions that lead to the matrix (4.16). The 

characteristic equation computed by the machine was 

pa “-- ~,SJ’&~~ -i- :MO9p* -- 2.848~ + 1 .OOO :z 0 (4.181 

Equation (4.181 agrees very well with equation (4.17). 

1t can easily be shown that in both cases the conditions (3.81 are 

satisfied; hence, the solutions are stable in the Liapunov sense, in spite 

of the presence of the hyperbolic functions in the expressions (4.14). 

5. If we consider the equations of the pekturbed motion in the finite 

interval of time (0, t*> ffor example, in the interval 0 < t < n/o, which 

corresponds to half a circulation1 after which the ship resumes the 

straight line course, then the presence of a positive root in the equation 

(4.10) causes the coordinates x. to increase in the given interval (the 

initial values at t = to are 2 Jo’)), 

In cases of prolongedmanoeuvresof the ship, which consist of sequences 

of turns and circulations, separated by intervals in which the ship 
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travels in a straight line with constant speed (in such a case the motion 

of a gyrocompass is described by a system of equations different from 

(4.5)), and with non-zero initial conditions the gyrocompass could acquire 

very undesirable oscillations of increasing amplitude. 

6. Now considering the equation (4.10) and the formulas (2.4) we shall 

allow the slope s characterizing the restoring moment to be sufficiently 

small, and satisfy the condition p = u. 

It could easily be shown that in such a case the indicated equation 

will not have positive roots, consequently there will be no tendency for 

oscillations to increase in amplitude, 

It could be mentioned, that when p = u, the equations of the perturbed 

motion (2.3) can be integrated in closed form and will possess the pro- 

perties of the space gyrocompass of Geckeler-Anschutz. 

This could easily be demonstrated by constructing the solution of 

(2.3) by the method used in [ 4 1 . 
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